Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

(AUTONOMOUS)

B.Tech II Year II Semester Supplementary Examinations July-2021

DISCRETE MATHEMATICS

(Common to CSE & CSIT)

Time: 3 hours

PART-A

Max. Marks: 60

		(Answer all the Questions $5 \times 2 = 10$ Marks)	
1	a	Write the negation of the statement "Today is Friday" and express this in simple English.	2M
	b	Define homomorphism.	2M
	c	In how many ways 5 students can be selected from 12 students without student.	2M
	d	State generating function.	2 M
	e	Define Spanning Tree.	2 M
		PART-B	
		(Answer all Five Units $5 \ge 10 = 50$ Marks)	
		UNIT-I	
2	a	Define Max-terms & Min-terms of P & Q & give their truth tables.	5 M
	b	Obtain PCNF of A = $(p \land q) \lor (\neg p \land q) \lor (q \land r)$ by constructing PDNF.	5 M
		OR	
3	a	Obtain the principle conjunctive normal form $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$.	5M
	b	Define Quantifiers and types of Quantifiers with examples.	5 M
		UNIT-II	
4	a	Prove that the set Z of all integers with the binary operation $*$, defined as a $*b = a + b$	5M
		$b+1$, $\forall a, b \in Z$ is an abelian group.	
	b	Let A = { 1,2,3,4} and let R = { $(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)$ } be an	5M
		equivalence relation on R?	
		OR	
5	a	Explain the concepts of homomorphism and isomorphism of groups with examples	5M
	b	Let A= { 1,2,3,4,5,6,7 } .determine a relation R on A by aRb \Leftrightarrow 3 divides(a - b),	5M
		show that R is an equivalence relation?	
		UNIT-III	

- 6 a Out of 80 students in a class, 60-play football, 53 play hockey and 35 both the games. 5M How many students (i) do not play of these games? (ii) Play only hockey but not foot ball.
 - b Out of 9 girls and 15 boys, how many different committees can be formed each 5M consisting of 6 boys and 4 girls.

OR

- a Show that if 8 people are in a room, at least two of them have birthdays that occur on 6M 7 the same day of the week.
 - **b** How many numbers can be formed using the digits 1, 3, 4, 5, 6, 8 and 9 if no 4M repetitions are allowed?

Q.P. Code: 18HS0836

		UNIT-IV	
8	a	Solve $y_{n+2} - y_{n+1} - 2y_n = n^2$	6M
	b	Solve an $-5a_{n-1} + 6a_{n-2} = 1$.	4M
		OR	
9	a	Solve the recurrence relation $a_r = a_{r-1} + a_{r-2}$ using generating function.	5M
	b	Solve $a_n = a_{n-1} + 2a_{n-2}$, n>2 with conditions the initial $a_0=0$, $a_1=1$.	5M
		UNIT-V	
10	a	Show that in any graph the number of odd degree vertices is even.	5 M
	b	Explain In degree and out degree of graph. Also, explain about the adjacency matrix	5M
		representation of graphs. Illustrate with an example.	
		OR	
11	a	Define isomorphism. Explain Isomorphism of graphs with a suitable example.	5M
	b	Show that the two graphs shown below are isomorphic.	5 M

R18

END